Q. J. R. Meteorol. Soc. (2000), 126, pp. 14951514

An error analysis of radiance and suboptimal retrieval assimilation

By J. JOINER!* and D. P. DEE!Z

| NASA/Goddard Space Flight Center, USA
2General Sciences Corporation, USA

{Received 7 JTuly 1999, revised 19 December 1999)

SUMMARY

One of the outstanding problems 1n data assimilation has been, and continues to be, how best to utilize satel-
lite data while balancing the trade-off between accuracy and computational cost. A number of weather-prediction
centres have recently achieved remarkable success in improving their forecast skill by changing the method in
which satellite data are assimilated into the forecast model from the traditional approach of assimilating retrieved
products 1o the direct assimilation of radiances in a variational framework. Although there are clear theoretical
advantages to the direct radiance-assimilation approach, it 15 not obvicus at all to what extent the improvements
that have been obtained so far can be attributed to the change in methodology or to various technical aspects of
the implementation.

The central question we address here is: bow much improvement can we expect from assimilating radiances
rather than refrievals, all other things being equal? We compare the two approaches in a simplified theoretical
framework. Direct radiance analysis is optimal in this idealized context, while the traditional method of assimi-
lating retrievals is suboptimal because it ignores the cross-covariances between background errors and retrieval
errors. We show that interactive retrieval analysis (where the same background used for assimilation is also used
in the retrieval step) is equivalent to direct assimilation of radiances with suboptimal analysis weights.

We illustrate and extend these theoretical arguments with several one-dimensional analysis experiments,
where we estimate vertical atmospheric profiles using simulated data from temperature sounding channels of both
the Hiph-resolution InfraRed Sounder 2 (HIRS2?) and the future Atmospheric InfraRed Sounder (AIRS). In the
case of non-interactive retrievals the results depend very much on the quality of the background information used
for the retrieval step. In all cases, the impact of the choice of analysis method is dwarfed by the effect of changing
some of the experimental parameters that control the simulated ervor characteristics of the data and the retrieval
background.

KEYWORDS: Data assimilation Radiance Retrievals TIROS (Television Infra-Red Operational
satellite) Operational Vertical Sounder (TOVS)

1. INTRODUCTION

A data-assimilation system (DAS) estimates the state of the atmosphere by combin-
ing different types of atmospheric observations with a short-term model forecast (often
referred to as the first-guess or background field). Assimilated data types include, for
example, in situ measurements of temperature, moisture, and wind, obtained from radio-
sonde soundings. Such conventional observations have a high vertical resolution, but
their geographical coverage is mostly limited to land areas in the northern hemisphere.
Satellite observations, on the other hand, provide a more uniform spatial coverage but
are characterized by a relatively poor vertical resolution. This stems from the fact that the
satellite-borne mstruments measure quantities that are functions of the atmospheric state
variables, such as radiances emitted in certain spectral bands, or integrals of atmospheric
refractivity, rather than the state variables themselves.

Two basic approaches have been used to incorporate measurements from remote-
sounding instruments, such as the TIROS (Television Infra-Red Operational Satellite)
Operational Vertical Sounder (TOVS), in DASs: (1) assimilate radiances (either clear,
cloudy, or cloud-cleared to remove the effects of cloud) directly; (2) assimilate geo-
physical products (retrievals) obtained from the observed radiances. Several opera-
tional numerical weather prediction (NWP) centres have recently moved from the more
traditional approach of assimilating retrieved products to radiance assimilation using
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variational methods (e.g. Andersson ef al. 1998; Derber and Wu 1998). There are strong
indications that the implementation of direct radiance assimilation at the National Cen-
ters for Environmental Prediction (NCEP) has resulted in a large positive impact on
forecast skill, both in the northern and southern hemmspheres (Derber and Wu 1998),
However, a number of changes were introduced simultaneously to the NCEP DAS, in-
cluding improvements in quality control and systematic error-correction algorithms. It
would be extremely interesting to study the performance of various assimilation meth-
ods by means of a controlled set of experiments using a fixed DAS and a single, quality-
controlled input dataset with a fixed systematic error-correction scheme, However, such
a comparison would be difficult to implement. A cleaner comparison was recently con-
ducted at The Met. Office, Bracknell (R. Renshaw, personal communication). These
experiments involved assimilating radiances or one-dimensional variational (1D-Var) re-
trievals using the same radiances and systematic etror correction. Radiance assimilation
gave a substantially positive impact in the southern hemisphere. The retrieval assimila-
tion was suboptimal in that it assumed the observational errors to be uncorrelated (both
vertically and horizontally). However, the observation error covariance was different for
the 1D-Var retrievals and the three-dimensional variational (31)-Var) assimilation, with
values empirically optimized for both.

The shift toward radiance assumilation has resulted, in part, from theoretical work
by Byre et al. (1993), who argued that assimilation of retrieved products amounts to a
suboptimal use of the data. Retrievals are produced by combining observations with a
prior estimate of the state of the atmosphere, possibly obtained from a forecast model,
from climatological data, or from a database of physically feasible vertical profiles. By
assimilating the retrievals rather than the radiances into a DAS, additional information
from the prior estimate will enter the system along with the measurement information.
Errors in retrievals partly depend on the errors in the prior estimate used o produce
them, and it is reasonable to expect that the latter are correlated with the errors in the
background field used by the DAS, especially in local situations that are important to
the DAS. The resulting cross-covariances between retrieval and background errors are
not easily quantified and are usually ignored.

In selecting an appropriate assimilation method, computational and other practical
issues must be considered as well. Even if radiance assimilation is more desirable from
a theoretical point of view, the computational cost of suboptimal retrieval assimitlation
can be significantly less. This is especially pertinent for advanced sounding instruments
such as the Atmospheric InfraRed Sounder (AIRS), which will fly on the National Aero-
nautics and Space Administration’s (NASA) Earth Observing System Post Mendiem
(EOS PM) Platform, and the Infrared Atmospheric Sounding Interferometer (LASI), to
fly on the European Meteorological Satellite Polar System. These instruments have one
or two orders of magnitude more spectral channels available than TOVS. Because of
this dramatic increase in data volume, computational costs and simplified logistics may
ultimately be the decisive factors in choosing an appropriate assimilation strategy for
these instruments. A dedicated science team has been formed for the AIRS instrument
whose task, in part, is to produce high-quality retrieved products that could be used
for data assimilation. Combining the experience, expertise, and algonthm development

of data-assimilation centres and instrument teams would be highly beneficial to both
groups. However, when such a team is not present there are other considerations. In the

case of data from the National Oceanic and Atmospheric Administration (NOAA)-15
satellite, the raw radiances were available almost a year before operational retrieved
products were released. Therefore, users of this radiance data were able to assimilate
the data much earlier.
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Joiner and da Silva (1998), referred to here as JS, explored various alternatives
to radiance assimilation, with an eye toward the assimilation of future data from
advanced sounding instruments. For data assimilation systems such as the Physical-
space Statistical Analysis System (PSAS) which has been developed at the NASA
Goddard Data Assimilation Office (DAQ), the computational cost goes up dramatically
as the number of observations increases, Computational costs also rise with the number
of observations in 3D-Var, although not as dramatically. For AIRS and 1ASI, the cost
of assimilating radiances will be significantly greater than that of assimilating retrievals
in the current implementation of the PSAS at the DAO. The number of AIRS radiance
measurements for temperature soundings can be 50 times larger than the number of
useful pieces of information for a DAS. JS showed that a compact representation of
radiances in physical space can be defined which does not retain prior information.
The information content of this projection is essentially the same as that of the original
set of radiance measurements. Consequently, the assimilation of compressed radiances
results in nearly optimal analyses, while retaining some of the practical advantages of
traditional retrieval assimilation.

In this paper we address a different question: how much deterioration actually results
from a suboptimal analysis of retrieved products due to the reasons stated? Starting from
the nonlinear statistical analysis equations, we compare the analysis etrors resulting
from suboptimal three-dimensional (3D) analysis of one-dimensional (1D) retrievals
with the errors that would result from optimal analysis of radiance data. We consider
interactive retrievals, for which the retrieval prior estimate is identical to the background
used 1n the assimilation system, as a special case. The effect of ignoring the retrieval-
background error cross-covariances is illustrated with 1D analysis experiments using
simulated data from high- and low-spectral-resolution infrared sounders. Numerical
simulations that quantify the additional effect of not properly accounting for horizontal
background error correlations will be reported in a follow-up paper.

The outline of the present paper is as follows. In section 2 we review the statistical
analysis equations for nonlinear observation operators and derive linearized expressions
for the analysis error covariances. This leads to a general error analysis for 3D-Var
analysis of radiance data. In section 3 we discuss the production of 1D retrievals and
their analysis, and in section 4 we concentrate on interactive retricvals. We are then able
to show the precise relation between the two alternatives; in fact, interactive retrieval
analysis is linearly equivalent to radiance analysis with a suboptimal gain. We also prove
the linear equivalence in a 1D analysis system between optimal radiance analysis and
optimal analysis of optimal retrievals. In section 5 we describe the configuration and
results of our numerical experiments. We briefly discuss our conclusions and future
work in section 6.

2. RADIANCE ANALYSIS

The objective of statistical analysis is to produce an accurate estimate of the
atmospheric state, given a set of current observations and a background estimate.
Satellite-based remote-sounding instruments observe the atmosphere by measuring
radiances in a number of spectral intervals for each pixel in the instrument field of view.
If the relationship between the radiances and the atmospheric state can be accurately
represented by a model, then it is feasible to combine the radiance data directly with the
3D background estimate in a single step.
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(@) The nonlinear analysis equations

Using the notation defined in IS, the variational framework (e.g. Lorenc 1986;
Talagrand 1988) defines the state estimate as the minimum of the functional

J(w) = (w — whHTPH Y w — wh + {w® — h(w)}'R™H{w® — h(w)}, (1)

where the unknown vector w represents the 3D state of the atmosphere, W' is a

background estimate or first guess, w° is a vector of observations, P! is the background
error-covariance matrix, R is the observation error-covariance matrix, and h(w) is
the observation operator (generally nonlinear) that maps the atmospheric state into
observables. In the context of a real-time DAS, the background estimate usually consists
of a short-term forecast.

If the background and observations are unbiased, with errors that are normally

distributed and uncorrelated with each other, and if the covariances Pf and R are
correctly specified, then the analysis state obtained by minimizing I(w) is the mode

of the conditional probability density function p(wiw!' | ] w°). This renders it optimal in
a broad but well defined sense; see Jazwinski (1970).
The minimum of J{(w) can be obtained by a quasi-Newton iteration of the form

Wit =w + Ki{w® — h(w;) + H; (w; — w'}, (2)

(e.g. Rodgers 1976) where the subscript i denotes the iteration. A convenient initial
iterate is Wy = w', and the matrix K; is the optimal Kalman gain given by

K; = P'HI (H,P'H +R)™, (3)
and H; is a linearized version of h,

H= S (4)

BW W=W;

The analysis vector, w?, is the state obtained at convergence:

W = }im W;. (5)
[ e W
At convergence, Eq. (2) becomes
wh = wi 4+ K{w® — h(w?) + H(w? — w')} (6)
where
K = PrHT(HPHT + R) L, (7)
O (8)
ow Wy

We will refer to Egs. (6)—(8) as the nonlinear analysis equations.

() Linearized analysis error covariances

If the observation operator is linear, then the matrix, H, is constant, and h(w") =

h(w) 4+ H(w? — w'). Only a single iteration of Eq. (2) is then needed, and the analysis
equation (6) simplifies to the familiar form

w® = w + K{w® — h(w)}. (9)
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Allowing for possible dependencies among background and observation errors and

assuming that P* and R are accurate, the error covariance, P?, of the analysis, w", 1s
given by

P =1 - KHP(J - KH)T + KRK" + KXT - KH)T + I - KDHX'KT, (10)

with X the background-observation etror cross-covariance matrix, and I the identity
matrix. This expression is valid for any gain matrix K, (e.g. for the optimal gain given by
Eq. (7) or any suboptimal gain). If background and observation errors are uncorrelated,
then X == ( and Eq. (10) reduces to

P? = (I — KH)PH{I - KH)T + KRKT, (11)
If, in addition, K is given by Eq. (7), then this expression further reduces to
P* = (I — KH)P!, (12)

In the general case when the observation operator is nonlinear the expressions (10}~
(12) can be used to approximate the actual analysis error covariances, by evaluating the
linearized observation operator H at w = w®. The local accuracy of these approximations

then depends on the magnitude of the term {h(w?) — h{w®) — H(w? — wil.

(c) Analysis of radiances

The observation operator associated with radiance measurements involves an ap-
proximate radiative-transfer or empirical model, which we denote by f(z, b). Such a
model can be used to simulate radiances given any atmospheric state, z. The vector b
represents state-independent model parameters, which we assume to be known here.
The state variables, 2z, of the radiative-transfer model are generally compatible with
the state variables, w, of the background—in the sense that both vectors are discrete
representations of the same geophysical quantities in the same physical domain. Some
parameters in the radiative-transfer model are not state variables (e.g. surface quantities
such as emissivity, temperatures above the model top, etc.). These may be included in b.
In addition, z and w are not necessarily defined at the same locations. The observation
operator associated with radiance assimilation is therefore

hiw) =1{(z, b) = {(dw, b), (13)

where £ 1s an interpolation operator (assumed linear throughout) that maps forecast

model state variables to the state representation of the radiative-transfer model at the
observation location. The linearized observation operator, H, is

oh  of 9z

He — o 0

JwW  0Z OW

with F the Jacobian of the radiative-transfer model. Applying the optimal nonlinear
analysis equations (6)-(8), we obtain

=Fd, (14)

w? = w! 4+ K¥®{y — f(2%, b) + F(z® — 2}, (15)

K% =PI FT(FgP QTR + Ry T, (16)
of

F = (17

0z =72
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where z&' = 4w?{, and R” is the radiance (or equivalent brightness temperature) error
covariance associated with the radiance measurements, y. The covariance matrix, R,
accounts for both instrument error and radiative-transfer model error, as discussed by
JS, Eyre et al. (1993), and by Rodgers (1990).

If the assumption holds that the radiance errors are independent of the background
errors and if the linearization error {f(z%, b) — f(z!, b) — F(z® — zD)} is small, then
the linear approximation Eq. (12) applies. The analysis error covariance for optimal
radiance analysis is then approximately

P? ~ (I - K*FLHPI(I — K»Fg)T + KPR (K*)'
= ([ -~ K"F4)P, (18)

Under ideal circumstances, in the absence of bias and when all error covariances
are correctly specified, the nonlinear analysis equations (15)~(17) define the optimal
3D analysis of the radiance data. The expression Eq. (18) then gives a lower bound or
benchmark for all other analysis methods.

3. RETRIEVAL ANALYSIS

The alternative to radiance analysis is to first produce a set of vertical profiles of
atmospheric parameters such as temperature or humidity from the data. The retrieved
profiles can then be assimilated as if they were conventional in situ observations.

(@) Production of one-dimensional retrievals

The retrieval process can be regarded as the solution of a simplified, 1D version
of the statistical analysis problem described in the previous section. Retrievals can be
thought of as a 3D analysis made up of a composite of 1D vertical profiles defined
at a set of horizontal locations, e.g. within a satellite swath, Each of the profiles is
obtained by solving a 1D analysis problem based on a subset of the radiance data.
A prior-state estimate is needed to supplement the data if the observing system does
not completely resolve the vertical structure of the profile. The physics of radiative
transfer generally make nadir-viewing instruments insensitive to the high-frequency
components of the atmosphere’s vertical structure. Therefore, retrievals produced from
nadir-sounding microwave and infrared instruments such as the TOVS may include
significant information from the prior estimate.

We can write the retrieval state, z', symbolically as

z' =Dy, b, 2"), (19)

where D denotes a 1D, generally nonlinear, estimator, and z?P is the prior-state estimate.
As before, the vector y represents the radiance data, and b are the radiative-transfer
model parameters.

Errors associated with 1D retrievals defined at different locations are not indepen-
dent. It can be shown (e.g. JS) that, if PP is the error covariance associated with the
prior-state estimate, and

Dy= —| (20)

then a linear approximation to the retrieval error covariance is -

R® ~ (I — D,FP’(I - D,F)’ +D,R'D]. 21
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Since PP generally involves horizontal as well as vertical correlations, Eq. (21) shows
that the errors in retrievals at different locations must be correlated as well. Note the
analogy between this expression for the retrieval error covariance, R?, and Eq. (11); see
also Eyre (1987) and Rodgers (1990). The linear operator, Dy, plays the role of the gain
matrix, as will become clear in the following paragraphs.

The optimal 1D estimator, D, minimizes the likelihood functional

J@)=@z—)' P -2+ {y - fz. B)TR) y—fz, b)). (22

The covariance matrix, PIED, here is obtained from PP by neglecting all horizontal
correlations, i.e. setting them to zero. This corresponds to the fact that some information
is lost by replacing the full 3D-Var analysis of section 2(c) by a set of decoupled 1D
analyses; information from a sounding at a given location is not allowed to influence the
analysis at any other location.

The nonlinear analysis equations of section 2(a) imply that, given a prior-state
estimate, zF, and radiance data, y, the optimal 1D retrieval satisfies

2" =7" + Dy{y — f(&', b) + F(z" — 2P)}, (23)
D, = P],F (FP{FT + RY)™1, (24)
f
el (25)
0z ey A

A linear approximation to the retrieval error covariance, R¥, can be obtained by substi-
tuting Eq. (24) into Eq. (21). The accuracy of such an approximation depends on the
size of the term {f(z', b) — {(zP, b) — F(z" — zP)}.

Da Silva et al. (1996) provide statistical evidence for the presence of both hori-
zontally correlated and uncorrelated retrieval error components, consistent with the two
terms in Eq. (21). They also show how one can estimate the variances of both com-
ponents, as well as the decorrelation length of the horizontally correlated component,
based on the output of a DAS and radiosonde observations.

(b) Three-dimensional analysis of one-dimensional retrievals

In traditional retrieval analysis the retrievals, z°, are treated as conventional obser-
vations. The observation operator then merely involves interpolation:

hiw) = dw. (26)
The analysis equation is simply
w? =w' 4+ K%(zf — 4wh). (27)

It can be shown that the optimal gain, K%, which properly accounts for non-zero
retrieval-background error cross-covariances, X, is

K* = (P'47 — XT)(gPTgT + R? — gXT — x40y~ (28)

Numerical solution of the analysis equations with this gain is difficult, because the
second factor on the right-hand side of Eq. (28) can be nearly singular. Eyre ef al.
(1993) used the approach of Lorenc et al. (1986) to control the associated numerical
mstabilities, by mapping the 1D retrievals into a reduced space and then modifying both
the retrievals and their error variances appropriately.



1502 J. JOINER and D. P. DEE

In practice, X is usually neglected because it is difficult to estimate anyway (see,
however, da Silva ef al. (1996)). This results in the suboptimal gain

Ko = PLgT(gPigT + RH™. (29)

Retrieval analysis with a gain matrix of this form has been implemented operationally in
a number of DASs (Susskind and Pfaendtner 1989; Goldberg et al. 1993). However, it 18
clearly not justifiable to assume that retrieval errors are independent of the background
errors, i.e. that X = 0. Correlations between retrieval and background errors would
result, for example, if the latter are correlated with errors in the prior estimate, 2P, used
for the retrieval production. |

For later reference we provide a linear approximation for the analysis error covari-
ance, valid for any gain matrix, K?. Substitution of the optimal 1D retrieval equation
(23) into the retrieval analysis equation (27) gives

w=w + K[z — 4w’ + D,y — f(z', b) + F(z' — 2))}1. (30)

If XP! is the cross-covariance between prior estimation and background errors, then the
linear part of Eq. (30) implies

P2 (1 — KPP — KEO)T
+ (K* — K*D,PPP(K* — K*DyF)’
+ (K°D,)R? (K*Dy)!
+ (I — K*HXPHK? — K*D,P)!
+ (K* — K*D,BXPI(I — K*9)'. (31)

The first three terms involve the error covariances of the background, radiance observa-
tions, and the prior estimate for the retrieval, respectively. The last two terms depend on

the matrix XP, which is generally unknown.

4. INTERACTIVE RETRIEVAL ANALYSIS

Interactive retrievals use the background estimate produced by the DAS (ie. a
current short-term forecast) as the prior-state estimate in the retrieval process.

(a) Production
We now have

2P = dwl, (32)
pP = gP gl (33)
Substitution into Eqgs. (23)-(25) gives |
Z = dw' + D, {y — £, b) + F(Z — z")}, (34)
D, = 4P L 2 TFI(FIPi L4 TFT + R, (35)
= (36)
o / .

with Pﬁﬂ defined by replacing the horizontal correlations in PL by zero.
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We obtain an expresston for the interactive retrieval error covariance, R?, by substi-
tating Kgs. (35) and (33) into Eq. (21). Some rearrangement yields
R* ~ (I - D,F){P|pd" + 1 - D,ALP - P a7 (1~ D,F)T. (37)
It follows directly from the linear part of Eq. (34) that the retrieval-backeround error
cross-covariance, X, is approximately
X ~ (I — D,F){P". (38)

Comparison of Egs. (37) and (38) shows that the retrieval-background error cross-
covariance is of the same order of magnitude as the covariance of the retrieval error

itself. In fact, if P — P!, is small then
R~ Xa'. (39)

This underlines the remark made in section 3 that it is not justifiable to assume that
retrieval and background errors are independent. It remains to be seen whether the effect
on analysis accuracy of ignoring the cross-covariances (i.e. setting X = () is significant
in view of the many other approximations that are introduced in practice.

(b) Analysis

We now consider the analysis of interactive retrievals, first with an unspecified gain
matrix, K*. Combining Egs. (34)-(36) with Eq. (27) gives

w' =w + K°D, [y ~ f(z', b) + F@" — 20}, (409
D, = 4P ATF (FAPI L 4TFT + RY) 1, (41)
F= -g—i— . (42)
A linear approximation for the associated analysis error covariance is
P* ~ (I — K*D,F)P (I - K*D,FHT + KD, R (K*D,)". (43)

Comparison with the nonlinear analysis equations (15)—(17) for radiance analysis shows
precisely the sense in which the analysis of interactive retrievals can be regarded as a
suboptimal form of radiance analysis.

Iirst, note that z° is replaced by z' in the nonlinear terms of the analysis equations.
This discrepancy is due to the fact that the nonlinear retrieval process has been decou-
pled from the iterations Eq. (2) of the analysis equations, while all equations are solved
simultaneously in the variational approach to radiance analysis.

Second, the gain matrix, K’°, for radiance analysis is replaced by K?D,, for retrieval
analysis. This modifies the linear terms of the analysis equation and should, therefore,
represent a significant difference between radiance and retrieval analyses.

(¢} Linear comparison with radiance analysis

Let us now assume that the nonlinear component of the radiative-transfer model is
small, in the sense that

f(z, by =~ f(z%, b) + F(z — z%) | (44)

for a constant matrix, F. This linearity assumption cannot be expected to be uniformly
valid (for all possible retrieval states z), but it should be reasonably accurate locally (for
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z near 2° at a given location). Applying Eq. (44) at z = 7' and at z = z', both the radiance
analysis equation (15) and the interactive retrieval analysis equation (40) can be written

we = wl + K {y — f(z, b)}, (45)
but with
K =K" =P aTF(FaP 2 TF! + R (46)
for (optimal) radiance analysis, and
K’ =K' = K* 4P 4 TFT (FeP 2 FT + RY) ™ (47)

for (suboptimal) retrieval analysis. This shows clearly that interactive retrieval analysis
is linearly equivalent to radiance analysis with a suboptimal gain.

Comparison of the two gain matrices shows, first of all, the replacement of Pl in

Eq. (46) by Pi, in Eq. (47). Horizontal background error correlations are not fully
accounted for in retrieval analysis, since the retrievals solve 1D rather than 3D analysis
problems. This implies suboptimal use of the available radiance data.

Secondly, the gain matrix for retrieval analysis contains an extra factor, K*J.
Consider, for the moment, the optimal retrieval gain given by Eq. (28). Under the hinear

approximation, and assuming that Pf — Pi;}} is small, it follows from Eq. (39) that
Kt =K%~ (PIgT - XHaptg! — gxh)~1 (48)

This expression shows that the optimal gain matrix for retrieval analysis would be
identical to that for radiance analysis but for: (1) Omission of the horizontal background
error correlations, and (2) interpolation effects, Thus, in a 1D analysis system, optimal
radiance analysis and optimal analysis of optimal retrievals are linearly equivalent.

As mentioned earlier, however, use of the optimal retrieval gain is impractical for

computational reasons, To show this more clearly, we apply Eq. (39) again to obtain the
alternative expression

Ko = (P gT - xXTyapfgt — R 1, (49)

The second matrix factor on the right-hand side is difficult to invert, unless all its
eigenvalues are bounded away from zero. This condition is violated whenever the
observing system does not completely resolve the vertical structure of the profile,
because in that case there is at least one mode for which the retrieval accuracy is
comparable to or worse than the background accuracy.

Of greater practical interest is the following analysis for the suboptimal retrieval
gain, K% =K%, defined by Eq. (29), which was obtained by neglecting retrievai-
background error cross-covariances. We again assume P = Pgﬁ, and consider the
two extreme cases when (1) the retrievals are completely determined by the radiance
observations alone, or (2) the retrievals depend exclusively on the background, which
is the prior-state estimate used in the interactive retrieval process. Substituting Eq. (37)
mto Eq. (29), we obtain

Ko g =P aTapia? + 1 -D,FmapaT} -1y, (50)

Note that K*e { is the matrix factor that modifies the optimal gain for the radiance data,
see Eq. (47). The linear part of the interactive retrieval equation (34) can be written

7' = (I - D,F)dw’ + Dyy. (51)
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It the state is overwhelmingly determined by the radiance observations, then DyF =1,

i.e. the retrieval is almost independent of the prior estimate w! (see JS). Equation (50)
then shows that in this case the differences between radiance and retrieval analyses are
due only to the appearance of the interpolation operator J{; neglecting interpolations we
have K%° 4 =~ 1. This shows, not unexpectedly, that in this case the effect of ignoring the
Cross-covariance terms in the retrieval analysis is negligible.

In the other extreme, suppose that the radiance observations contain virtually no
information. Then DyF &0, and Eq. (50) then implies that, ignoring interpolation
effects, the radiance data are assigned only half as much weight as they should be. On
the other hand, Eq. (46) implies that the optimal weights for the radiance data are very
small to begin with, in this situation. Therefore, the difference between optimal radiance
analysis and suboptimal retrieval analysis is negligible in this case as well.

This argument can be applied to each vertical mode of the retrieved state. The impact
of ignoring the retrieval-background error cross-covariances in interactive retrieval
analysis is more difficult to assess for modes that depend equally on observational and
background information. The 1D numerical simulations reported in the next section will
shed some light on this matter.

3. ONE-DIMENSIONAL SIMULATION RESULTS

We compare the analysis errors for 1D optimal radiance analysis with those for
several suboptimal retrieval analyses, using simulated temperature Jacobians for two
different infrared sounders: The AIRS and the High-resolution InfraRed Sounder 2
(HIRS2). This type of 1D experiment represents the vertical structure in a 3D analysis
at a location where there is one isolated sounding. HIRS2 has flown continuously on
polar-orbiting satellites from 1978 to the present as part of TOVS (see Smith et al.
1979). HIRS2 has 19 infrared channels, a single-spot ground field-of-view size at nadir
of 17.4 km and scans cross-track +49.5° from nadir. AIRS is an advanced sounder
with over 2000 channels that will fly on the NASA EOS PM platform in the vear 2000
(Aumann and Pagano 1994). AIRS has similar spatial resolution and coverage to HIRS2,
but the spectral resolution is more than an order of magnitude greater,

We focus here on a single aspect of data assimilation for infrared sounders, namely
the temperature profile information contained in the radiances. The simulated HIRS2
channel set includes 11 of the 20 channels (channels 1-7 and 13-16). These are affected
mainly by CO» absorption and are typically used for temperature soundings. The AIRS

channel set includes all 550 available channels between 650 and 7472 cm™!, between
2160 and 2270 cm™", and between 2379 and 2407 cm—". These are the same channel
sets used in JS, and we also prescribe the same instrument-specified noise-equivalent
lemperatures as in JS. Some of the HIRS2 and AIRS channels are affected by water-
vapour absorption and/or the surface skin temperature and emnissivity, but for simplicity
we assume these variables to be known.

As in JS, the Jacobian, F, for each instrument is computed using a fast radiative-
transfer algorithm based on parametrizations similar to the ones described in Susskind
et al. (1983). The linearized observation operator, H, is equal to F, because for these
1D experiments 4 = I. Radiance errors for different channels are assumed independent,
with variances equal to the sum of the squared channel noise-equivalent temperatures
{(NEAT) plus an additional (0.1 K)? to account for forward model errors. It should
be noted that apodization, for an instrument such as IASI, would produce correlated
radiance errors. For simplicity, we assume clear-sky night-time (i.e. no reflected solar
radiation) and nadir-viewing conditions. These simulations are sutficiently realistic to
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Figure 1. Thickness analysis error standard deviations (m) for optimal radiance assimilation (solid lines) and for

interactive retrieval assimilation (dashed lines), using simulated Atmospheric InfraRed Sounder (AIRS) and High-

resolution InfraRed Sounder{HIRS) data, Forecast error standard deviations are shown for reference (dot-dashed
line).

provide a meaningful comparison between the different analysis methods; in particular,
the same simplifying assumptions are made in all cases.

We specify a thickness background error covariance, P!, for our experiments in 17
layers defined between the levels 0.4, 1, 2, 5, 10, 30, 50, 70, 100, 150, 200, 250, 300,
400, 500, 700, 850, and 1000 hPa based on the Goddard EOS DAS 6-hour forecast
height error covariances. These were estimated from time series of North American
rawinsonde observed-minus-forecast residuals using the method described in Dee and
da Silva (1999). Horizontal background error correlations do not play a role in these
experiments, Retrieval error covariances originally specified for temperature have been
hydrostatically converted to thickness error covariances, while background errors were
converted from height to thickness.

For radiance analysis experiments we use the linearized analysis equations (45) and
(46), and estimate the analysis errors using Eq. (18). For interactive retrieval analysis
we use Eqgs. (27) and (29), specify retrieval error covariances according to Eqgs. (37) and
(35), and estimate the analysis etrors using Eq. (43). JS showed by means of Monte
Carlo simulations that the linearized expressions for the analysis error covariances
approximate the errors for this particular problem quite well, although the actual errors
are slightly underestimated.

(@) Interactive retrieval analysis

(i) Using correct retrieval error covariances. Figure 1 shows the estimated thickness
error standard deviations (m), as a function of pressure plotted at the layer mid point, for
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Figure 2. lLeading eigenvectors and eigenvalues of FIRY)IF for the Atmospheric InfraRed Sounder (solid
line, A1) and the High-resolution InfraRed Sounder (dashed line, A2) for a mid-latitude profile.

radiance analysis (solid curves) and for interactive-retrieval analysis (dashed curves), us-
ing either AIRS or HIRS. For reference, the prescribed background-error standard devi-
ations are shown in the figure as well. Since the error covariances are correctly specified
for this experiment, interactive-retrieval analysis is suboptimal only because the cross-
covariances between retrieval and background errors are not accounted for. The error
standard deviations are obtained from the diagonal of the analysis error covariance, P2,
computed for each case. The figure shows that the analysis-error standard deviations for
the two methods are virtually indistinguishable. Not shown are the thickness analysis-
error vertical correlations, which are also nearly identical for the two methods. To gain
some insight into this result, we separate the analysis errors into contributions from the

background and the radiances.
We project the two components of the analysis error covariance onto the eigenvec-

tors of FT(RY)™IF, which are the columns of the unitary matrix, U, in
FIRY)“IF=UDUT, (52)

with D a diagonal matrix of eigenvalues. This transformation was used in IS to produce
compact partial eigen-decomposition retrievals. The eigenvectors for the two instru-
ments are shown in Fig. 2 in order of decreasing eigenvalue, that is to say, in order
of increasing uncertainty. Accordingly, we can define

2, = UT(I— KPP - KF)'U (53)

and

P, = U'KR'KU, (54)
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Figure 3.  Forecast and radiance contributions to the analysis error variances, projected onto the eigenvectors of
Fig. 2, for simulated Atmospheric InfraRed Sounder data.

corresponding to the two terms in Egs. (18) or (43) representing either the back-
ground or radiance component of the errors, respectively. The matrix Pf:‘f) represents

the background-error contribution, and P?y} the radiance-error contribution, to the anal-

ysis error covariance. Figure 3 shows the diagonal elements of these two matrices on
a logarithmic scale, for the optimal (radiance analysis) case with K = K given by
Eq. (46) and the suboptimal (interactive-retrieval analysis) case with K = K< given by
Eqgs. (47) and (29).

Figure 3 shows that the interactive-retrieval analysis effectively assigns too much
welght to the background and too little to the radiance data. The leading seven modes
are well determined by the radiance data, so that the analysis errors for these modes are
dominated by the radiance errors. The slightly increased weight given to the background,
therefore, does not greatly affect the analysis in the leading modes. For the trailing seven
modes, mformation from the background is largely dominant. In this regime, decreasing
the weight given to the radiance data likewise does not significantly affect the analysis.
For the middle modes (e.g. modes 8 and 9), the background and radiance errors are
comparable. The suboptimal weighting in these modes may, therefore, produce some
degradation in the analysis. As shown in Fig. 1, however, the overall degradation, as
measured by analysis-error standard deviations, is small.

Figure 4 is similar to Fig. 3, but uses the Jacobian and error covariances for the HIRS
instrument. The difference in weights in the cross-over modes (modes 2—4) appears
to be more severe for HIRS than for AIRS. However, as shown in Fig. 1, the overall
degradation in the suboptimal analysis is small in this case as well.

Table 1 shows the condition numbers of the innovation covariance matrices (i.e.
the quantity to be inverted when solving the analysis equation) for radiance analysis
and for optimal and suboptimal retrieval analysis for AIRS and HIRS. The numerical
conditioning of the analysis equations is slightly better for suboptimal retrieval analysis
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Figure 4. As Fig. 3, for simulated High-resolution InfraRed Sounder 2 data.

TABLE 1. CONDITION NUMBERS FOR THE INNOVATION COVARIANCE
MATRIX
AIRS HIES
Radiance assimilation 3.25 % 107 717 % 102

Retrieval assimilation, neglect X (sub-optimal} 5.63 x 10?7  6.39 x 10°
Retrieval assimilation, account for X {optimal)  7.59 x 10°  7.11 x 10°

See text for further information.

than for radiance analysis. This implies that solving the analysis equations (in the
PSAS context) will be somewhat more efficient for suboptimal retrieval analysis than
for radiance analysis, The condition numbers for the innovation covariance associated
with the optimal retrieval-analysis gain matrix Eqg. (28) are very high, mmplying near
singularity. This result is expected as explained in section 4 and by Eyre er al. (1993),
and suggests that it will not be possible to assimilate retrievals from nadir-viewing
instruments such as AIRS and HIRS with an optimal gain matrix.

(1)  Using incorrect retrieval error covariances. We now examine the effect of speci-
fying incorrect retrieval error covariances in the analysis. This would occur in practice,
for example, if the DAS employs a spatially invariant retrieval error-covariance model,
even though actual retrieval errors are state-dependent. Equations (37) and (35) show
how the interactive retrieval error covariances depend on the background and bri ghtness-
temperature error covariances, as well as on the Jacobian of the radiative-transfer model.
The latter is state dependent due to the state dependence of the transmittances and the
fact that brightness-temperature errors depend on scene brightness temperature. A colder
scene brightness temperature corresponds to a higher noise-equivalent temperature. For
example, the HIRS2 noise-equivalent temperatures for tropical and mid-latitude profiles
differ by factors ranging from about 0.8 to 1.6, depending on the channel.
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Figure 5. As Fig. 1, for a simulated tropical profile. Error covariances for the retrieval assimilation were
incorrectly specified as for a mid-latitude profile.

For these experiments we specily the interactive retrieval error covariances using
Egs. (37) and (33) as before, but with Jacobians and brightness temperature €rror
covariances computed for three different model-generated profiles, corresponding to
low-, middle-, and high-latitude cases. These profiles are described in more detail in J5.
We then simulate an analysis that used, for example, interactive retrievals in the tropics
with a retrieval error covariance computed for the mid-latitude profile. The analysis is
then suboptimal, not only because cross-covariances between retrieval and background
errors are ignored, but also because the retrieval error covariances are mis-specified.
We can still estimate the analysis error standard deviations for these cases, by means of
Fq. (43) with the gain matrix defined by Eqs. (47) and (29).

Figure 5 shows the estimated thickness-error standard deviations for the tropical
analysis with AIRS and HIRS, using incorrect error covariances based on the mid-
latitude profile. The differences between the analysis errors for the optimal and sub-
optimal cases are very smail. We obtain similarly small différences for all other profile
combinations. These results indicate that, for these 1D simulations, the analyses are
not sensitive to small mis-specifications of the retrieval error covariance. In the previous
section we showed that, in certain regimes, a mis-specification of the errors (e.g. neglect-
ing retrieval/background cross-covariance) does not significantly harm the analysis. The
results of this section imply that, in addition, a relatively smiall mis-specification of the
retrieval error covariance also does not significantly degrade the suboptimal retrieval

analysis. This result supports the use of spatially invariant retrieval error covariances for
interactive clear-sky temperature retrieval analysis.

(b} Non-interactive retrieval analysis

In order to simulate analysis errors that would be obtained with non-interactive
retrieval analysis, we need to make assumptions about the accuracy of the prior-state
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Figure 6.  As Fig. 1, but for non-interactive retrieval assimilation, using & = 1.5, y = 0.75 for defining the error
covariances, See text for further information.

estimate used for the retrieval, and about the cross-covariances between prior estimation
and background errors; see Eq. (31). We are interested in the situation where a back-
ground from an older or different DAS or from some other source such as climatology
is used as the prior information for the retrieval. In the next set of examples, we assume
that the retrieval prior and analysis background error covariances take the same form

(i.e. same vertical correlations). We then assume that the prior error variances (0‘3) are
larger than the analysis background variances (a'fz) taking the form (%2) = o2 (a'fz). To
model the background—prior error cross-correlation, we multiply the fully correlated
covariances by a factor y, where ¥ < 1. Thus, @ = 1, ¥ = 1 corresponds to interactive
retrievals. As y — 0 the analysis errors may become smaller than those obtained with
radiance analysis, because the prior-state estimate provides additional information. In
reality, prior estimation errors and background errors are likely to be significantly cor-
related. As y -» 1 when « > 1, the analysis should degrade. In this case the prior-state
estimate, which contains little additional information with respect to the background, 1s
assigned too much weight.

Figure 6 shows the estimated analysis errors for the case where the retrieval-
prior error standard deviations are 50% larger than those of the background and the
background—prior cross-covariance is about 0.75 (¢ = 1.5, ¥ = 0.75). As before, solid
curves correspond to (optimal) radiance analysis, and the dotted-dashed curve indicates
the background error standard deviations. At some altitudes, the HIRS analysis errors
exceed the background errors. Where the information content of the radiances is high,
such as in the lower troposphere, the degradation with respect to the optimal analysis 1s
small.

Figure 7 shows the same curves, but now with the prior-background cross-covariance
reduced (y = 0.25). This corresponds to an increase in the amount of independent in-
formation contained in the prior-state estimate for the retrieval. As expected, the results
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Figure 7. As Fig. 1, but for non-interactive retrieval assimilation, using o = 1.5, y = 0.23 for defining the error
covariances. See text for further information,

improve as y decreases; in fact, when y = (.25 the analysis errors are smaller than those
obtained with radiance analysis in almost every layer, even though o > 1. Wheno = 1.5
and y = 0.30, the result is nearly identical to optimal radiance analysis. The results of
these experiments show that when analysing retrievals, the retrieval prior information
and analysis background should have comparable errors. If this is the case, radiance
and retrieval analyses should produce comparable results. If the retrieval prior errors are
significantly larger than the analysis background errors, the resulting analysis can be
significantly degraded.

6, CONCLUSIONS AND FUTURE WORK

We set out in this paper to compare different ways of utilizing satellite data, either
by directly assimilating radiances in a variational framework or by first producing 1D
retrievals and then assimilating the retrievals. Actual implementation of either method
in an operational DAS involves numerous technical details, pertaining to quality control,
systematic error correction, and covartance tuning. This begs the question whether
the recent improvements in forecast skill obtained by centres that implemented direct
radiance assimilation, is due to the change in methodology, or a result of various
implementation details. In any case, computational and logistical arguments favour
some form of retrieval assimilation for future high-volume data types, especially when
using a PSAS-like analysis scheme. It is, therefore, important to learn as much as
possible about the expected analysis errors for various suboptimal schemes, and to
investigate whether any negative effects of retrieval assimilation are actually significant
in view of the many uncertainties inherent in any data-assimilation method.

We presented a theoretical comparison of the analysis schemes used in analyses
using radiances, interactive retrievals, and non-interactive retrievals. As has been pointed
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out elsewhere, interactive retrieval analysis amounts to a suboptimal use of radiance
data because cross-covariances between the retrieval and background errors are not
accounted for in the analysis. We showed that, in fact, interactive retrieval analysis
18 linearly equivalent to radiance analysis with modified (hence suboptimal) analysis
weights, We then showed that the resulting degradation of analysis accuracy is small for
vertical modes that are determined mostly either by the radiances or by the background
alone, but that the degradation can be significant for modes that are not well determined
by either. Fortunately, this degradation does not appear to contribute much to the overall
analysis errots.

These results were further clarified with a number of 1D numerical experiments,
for which we simulated data from two different infrared sounders: AIRS and HIRS?.
We found that the degradation of the analyses using interactive retrievals, rather than
radiances, is insignificant in the context of these experiments. Moreover, the de gradation
was small even when we mis-specified retrieval error covariances. Whether this result
holds true for more nonlinear problems, such as humidity analysis, remains to be seen.
We also experimented with analysin g non-interactive retrievals, varying the assumptions
about the accuracy of the prior-state estimate used in the retrieval process and about
the cross-covariances between the prior-estimation and background errors. We found
that analysis of non-interactive retrievals can only be effective if the accuracy of the
prior-state estimates used for producing the retrievals is at least comparable to that
of the background used in the analysis system. If not, then the analyses may turn out
significantly worse than in the case of either radiance or interactive retrieval analyses.
In fact, analysis of retrievals produced with inferior prior-state estimates may actually
result in analyses that are less accurate than the background itself.

- Our conclusions are based on theoretical considerations combined with simple 1D
simulations. There are obvious limitations to these experiments and the results may
be somewhat optimistic. In the presence of other data types, such as radiosondes, that
contain information on the higher-order vertical modes, retrieval assimilation could
cause a significant over-weighting of the background. In addition, the analysis equations
used here assume no bias in backeround and observation errors. Any bias present in the
background would, again, tend to be over-weighted in retrieval assimilation. This may
be particularly important when the retrieval contains prior information which is different
from the assimilation background. There are some ways to address these concerns.
For example, one might not assimilate retrievals when in the vicinity of radiosonde
data. One could also apply a bias correction to the background field, as in Dee and da
Silva (1998) and Dee and Todling (2000), to reduce the effects of background bias for
interactive retrievals. Finally, we have considered here only temperature analysis, which
18 much more linear than humidity analysis. To address these concerns, we plan to do
more sophisticated simulations with multiple data types in 3D to explore more fully
the differences between radiance and suboptimal retrieval analyses. These simulations
will include the effects of horizontal correlations in background errors and will address
issues related to linearization and to representativeness of the observations on the scale
of the estimation.
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